Tutorial on Analysis with Multiple Thermal Loads using CAEPIPE

General

The Reference Temperature (can be defined through Layout window > Options > Analysis" is "the ambient temperature at which the pipe is to be/was initially installed". In other words, when the whole piping system is at Reference Temperature, the piping system is "stress free" and the involved pipe supports are "loads free", as long as there are NO cold springs introduced during the installation of the system. There is no need to input Reference Pressure, as at installation the pressure is zero.

T1, T2 etc. (tuned ON through the "Layout window > Loads > Load cases") refer to the temperatures prevailing during different operational states of the piping system. Please note that the value of T1 for the first operational state could be different for different portions of the piping system. In other words, you could input multiple values for T1 (by having at least that many "Loads") corresponding to different portions of the piping. In addition, the same element in the piping system can experience different temperatures T1, T2, T3 etc. during different operational states.

Hence, the Expansion (T1) case in the Results lists the "Range Solution" obtained for the temperature range from Reference Temperature to T1 [i.e., (T1 - Tref)], similarly for Expansion (T2), and so on. The Expansion (T1-T2) case in the Results lists the "Range Solution" obtained for the temperature range from T1 to T2, which is internally computed as [(T1 - Tref) – (T2 – Tref)], similarly for Expansion (T1-T3) and so on.

For the operating (W+P1+T1) case, CAEPIPE considers the weight, the pressure P1 corresponding to T1 and the expansion from Tref to T1.

The following are the Steps for performing Analysis with Multiple Thermal loads in CAEPIPE.

The attached stress system shows the layout of four (4) pipelines. These pipelines are connected to five (5) centrifugal pumps at one end (with one of them being the Spare) and four (4) tanks at the other end. Out of those 5 centrifugal pumps, Pump 2 is the Spare and will turn into operation when one of the other 4 pumps fails. In other words, at any point in time, 4 pumps are operating with 1 pump either on standby or not operational. To represent these, the following thermal load cases are required (see the attached model).

Cases	Description
Case 1	Pump 2 (the Spare) is "OFF" and the remaining Pumps are "ON"
Case 2	Pump 1 is "OFF" and the remaining Pumps (including Spare) are "ON"
Case 3	Pump 3 is "OFF" and the remaining Pumps (including Spare) are "ON"
Case 4	Pump 4 is "OFF" and the remaining Pumps (including Spare) are "ON"
Case 5	Pump 5 is "OFF" and the remaining Pumps (including Spare) are "ON"

ÞÞ	Caepip	e : Layout	(186) - [N	/lultipleThe	rmalLoads	.mod (C:	_		<	•I• Caep	oipe : Graphics	- [Mult	tipleThe	rmalLo	ads.mo	d (C:\1	utorials ^v	Multiple	ThermalLo	ads)]				×
File	Edit	View C	Options L	oads Mis	c Windo	w He	lp				File Vie	w Options	Windo	w Hel	р										
) 🖻	7	4	╞		tô	Q	•			a	╈	tôt	Q	Ð	Q	Q	щ	ца,						
#	Node	Туре	DX (ft'in'')	DY (ft'in'')	DZ (ft'in'')	Matl	Sect	Load	Data	^														Y	^
1	Title = I	Multiple Th	ermal Loads																					t	
2																							7	\checkmark	•×
3	Referen	nces:																					_		
4	Coordin	nate System	j:																						
5	X = Eas	st = 0 deg;	Y = Up ; Z =	South = 27	0 Deg																				
6		-				-				.								1							
7	From P	ump 1																				1			
8	10	From		64.9400					Anchor										1		- L				
9	10	Location							Flange	.										-					
10	20	Bellows			-0'9''	A778	12	C2	Flange																
11	25				-0'4-1/2''	A778	12	C2		.															
12	30	Reducer			-1'2"	A778	16	C2		.			1				-							, I	
13	35				-0.4160	A778	16	C2							1									<i>,</i>	
14	35	Location		I					Flange				y	1			1								
15	Dual Di	isc Water S	tyle Lheck	Valve						.		G			-						1				
15	Weight	t = 242 ID, \ I com	alve Length	i = 7.5°	07.1.00	4 7 7 0	10		C 1			6		2											
17	40	Valve			-07-172"	A778	16	1.2	Flange		•	9			. 1	r									
18	Guide S	support I		1	1.0000	4770	10	l ca	lo.a.				6	_ (1						
20	00				1.0000	A770	10	C2	Clause					200											
20	00 Vilatar	Lune Putter	المرابعة المرابع		-1.0300	IN//0	10	1.2	riariye				- 🔰		6	<u></u>									
21	Waler	- 117 IL L	iny valve		•			•		.						Ø	- 1								
22	70	Value	anule ceny	ur = 13.75	.0'2.172''	A779	16	CUI									2	09							
24	70	Location			001/2	[1.0		Flange							- 6	0								
25	80	Location			-2 5570	4778	16	сні	Welding tee																
26	90	Bend			-6.3330	A778	16	СНІ	rr ordanig (dd																
27	100	Bend		2.6700	0.0000	A778	16	CHL		~	<														>
	1.00		1	12.2.30	1	1	1.0	1	1	1					-										

-	Саері	ipe : P	ipe S	ections	; (3) -	[Multi	pleThe	rmalLoad	s.mod (C	:\Tutorial	s —		C) ×	
File	e Edit	Vie	w (Option	s Mis	ic Wi	ndow	Help							
+															
#	Name	Nom Dia	Sch	OD (inch)	Thk (inch)	Cor.Al (inch)	M.Tol (%)	Ins.Dens (Ib/ft3)	Ins.Thk (inch)	Lin.Dens (Ib/ft3)	Lin.Thk (inch)	Soil	^		
1	16	16"	10S	16	0.188	0.04	12.5								
2	12	12''	10S	12.75	0.18	0.04	12.5								
3	6	6''	10S	6.625	0.134	0.04	12.5								
4													۷	<i>y</i>	

10	Caepipe	: Materials (1) - [Multiple	Therm	alLoads	.mo	d (C:\1	Ги —	- 🗆	×				
File	e Edit V	View Optio	ons	Misc V	Vindow	/ Help)								
\dashv			i	2	Н	(ja			╞╺┥						
#	Name Description Ty Density (lb/in3) Nu Joint factor # Temp (F) E (psi) Alpha (in/in/F) Allowable (psi) A778 A312 TP316L AS 0.290 0.3 1.00 1 -20 28.7E+6 8.2TE-6 16700 A A A A A A A 2 100 28.1E+6 8.59E-6 16700														
1	A778	A312 TP316	L AS	0.290	0.3	1.00	1	-20	28.7E+6	8.27E-6	16700				
2							2	100	28.1E+6	8.59E-6	16700				
							3	200	27.5E+6	8.90E-6	14200				
							4	300	27.0E+6	9.20E-6	12700				
							5	400	26.4E+6	9.50E-6	11700				
							6	500	25.9E+6	9.70E-6	10900				
							7	600	25.3E+6	9.90E-6	10400				
							8	650	25.0E+6	9.90E-6	10200				
							9	700	24.8E+6	10.00E-6	10000				
							10	750	24.5E+6	10.05E-6	9800				
							11	800	24.1E+6	10.10E-6	9600				
							12	850	23.8E+6	10.15E-6	9400				
							13	900	23.5E+6	10.20E-6	9200				
							14	950	23.1E+6	10.25E-6	9000				
							15	1000	22.8E+6	10.30E-6	8800				
							16	1050	22.4E+6	10.35E-6	8600				
							17	1100	22.0E+6	10.40E-6	8400				
							18	1150	21.6E+6	10.50E-6	8300				
							19	1200	21.2E+6	10.60E-6	6400				
							20								
	1		-				_	1							

Step 1:

The above cases can be defined in CAEPIPE by defining the "Number of Thermal loads" as 10 through Layout window > Options > Analysis > Temperature.

Analysis Options ?	×
Code Temperature Pressure Dynamics Misc	
Reference temperature 70 (F)	
Number of thermal cycles 7000	
Number of thermal loads O 1 O 2 O 3 💿 10	
 Thermal = Operating - Sustained Solve thermal case 	
Elastic Modulus	-
 Use temperature dependent modulus 	
Use modulus at reference temperature	
OK Car	ncel

Step 2:

Define the Pressures and Temperatures for different operating cases described above through CAEPIPE Layout window > Misc > Loads. Description corresponding to Loads C1 through CHL is given in the table below for clarity.

Cases	Description	Pressures and Temperatures
Case 1	Spare Pump at Node 1010 is "OFF" and the remaining Pumps are "ON"	For C1, T1 = 70 degF; P1 = 0 psi. For others (C2 through C5), T1 = 250 degF and P1 = 10.1 psi
Case 2	Pump 1 at Node 10 is "OFF" and the remaining Pumps are "ON"	For C2, T2 = 70 degF; P2 = 0 psi. For others, T2 = 250 degF and P2 = 10.1 psi
Case 3	Pump 2 at Node 2010 is "OFF" and the remaining Pumps are "ON"	For C3, T3 = 70 degF; P3 = 0 psi. For others, T3 = 250 degF and P3 = 10.1 psi
Case 4	Pump 3 at Node 3010 is "OFF" and the remaining Pumps are "ON"	For C4, T4 = 70 degF; P4 = 0 psi. For others, T4 = 250 degF and P4 = 10.1 psi
Case 5	Pump 4 at Node 4010 is "OFF" and the remaining Pumps are "ON"	For C5, T5 = 70 degF; P5 = 0 psi. For others, T5 = 250 degF and P5 = 10.1 psi
Load with of which	h name "CHL" is defined to represent the port pump is OFF. Hence, the T1 through T5 is 250	ion of the piping that are always HOT irrespective 0 deg F and P1 through P5 is 10.1 psi.

The Load cases and Load combinations defined in the model can be seen using Layout window > Misc > Loads and Layout Window > Loads > Load cases respectively.

Define the loads C1 through CHL as shown in the snap shot below.

1-0-	Caepi	pe : L	.oads	(6)	- [Mı	ultiple	eTherr	nalLo	oads.n	nod (C:\Tut	torial	s\03_	Multi	pleTh	herma	lLoad	ds)]									×
<u>F</u> ile	<u>E</u> dit	Vi	ew .	<u>O</u> ptio	ns	<u>M</u> isc	<u>W</u> ir	ndow	<u>H</u> e	lp																	
+				f	Ĵ	Q		Н	I			⇒															
#	Name T1 P1 T2 P2 T3 P3 T4 P4 T5 P5 T6 P6 T7 P7 T8 P3 T10 P10 Desg. T Desg. Pr. Specific Add.Wgt. Wind Wind Wind Wind Wind Wind Load 2 Load 3 Load 4 [T] 70 0 250 10.1 250 10.1 250 10.1 250 10.1 250 10.1 250 0.7 0 70 0 7																										
1	þi 🛛	70	0	250	10.1	250	10.1	250	10.1	250	10.1	70	0	70	0	70	0	70	0	70	0	250	10.1	0.01			
2	C2	250	10.1	70	0	250	10.1	250	10.1	250	10.1	70	0	70	0	70	0	70	0	70	0	250	10.1	0.01			
3	C3	250	10.1	250	10.1	70	0	250	10.1	250	10.1	70	0	70	0	70	0	70	0	70	0	250	10.1	0.01			
4	C4	250	10.1	250	10.1	250	10.1	70	0	250	10.1	70	0	70	0	70	0	70	0	70	0	250	10.1	0.01			
5	C5	250	10.1	250	10.1	250	10.1	250	10.1	70	0	70	0	70	0	70	0	70	0	70	0	250	10.1	0.01			
6	CHL	250	10.1	250	10.1	250	10.1	250	10.1	250	10.1	70	0	70	0	70	0	70	0	70	0	250	10.1	0.01			
7																											

Step 3:

Assign the Loads C1 through CHL to different portions of stress system as required while creating the stress layout. After modeling the stress system, one can review the loads assigned to different portions using the Highlight feature through "Loads List window".

From the attached model, to review the loads assigned, place the highlight on each load (C1 through CHL) and press "Ctrl+H" or select option "Highlight" under List window >View to highlight only that portion of the model that is using that specific load. The snap shot below highlight only that portion of the model that is using the Load C1.

Step 4:

Select the load cases and load combinations required for analysis through Layout window > Loads > Load cases.

Load cases (29)			×
 Empty Weight (W) Sustained (W+P) Sustained (W+P1) Sustained (W+P2) Sustained (W+P3) Sustained (W+P4) Sustained (W+P5) Sustained (W+P6) Sustained (W+P6) Sustained (W+P7) Sustained (W+P8) Sustained (W+P9) Sustained (W+P10) Expansion (W+P10) Expansion (T1) Expansion (T2) Expansion (T3) Expansion (T4) Expansion (T5) Expansion (T6) Expansion (T7) Expansion (T9) Expansion (T10) OK Cancel 	 Expansion (T1 - T2) Expansion (T1 - T3) Expansion (T1 - T4) Expansion (T1 - T5) Expansion (T1 - T6) Expansion (T1 - T6) Expansion (T1 - T7) Expansion (T1 - T8) Expansion (T1 - T8) Expansion (T1 - T9) Expansion (T1 - T9) Expansion (T1 - T9) Expansion (T1 - T10) Expansion (T2 - T3) Expansion (T2 - T4) Expansion (T2 - T6) Expansion (T2 - T6) Expansion (T2 - T7) Expansion (T2 - T8) Expansion (T2 - T9) Expansion (T2 - T9) Expansion (T3 - T4) Expansion (T3 - T6) Expansion (T3 - T7) Expansion (T3 - T8) All None 	 Expansion (T3 - T9) Expansion (T3 - T10) ✓ Expansion (T4 - T5) Expansion (T4 - T6) Expansion (T4 - T7) Expansion (T4 - T8) Expansion (T4 - T9) Expansion (T4 - T9) Expansion (T4 - T10) Expansion (T4 - T10) Expansion (T5 - T6) Expansion (T5 - T6) Expansion (T5 - T7) Expansion (T5 - T8) Expansion (T5 - T9) Expansion (T5 - T9) Expansion (T5 - T10) Expansion (T6 - T7) Expansion (T6 - T8) Expansion (T6 - T9) Expansion (T6 - T9) Expansion (T7 - T8) Expansion (T7 - T9) Expansion (T8 - T9) Expansion (T8 - T9) Expansion (T8 - T9) Expansion (T8 - T10) 	 Expansion (T9 - T10) Operating (W+P1+T1) Operating (W+P2+T2) Operating (W+P3+T3) Operating (W+P4+T4) Operating (W+P4+T4) Operating (W+P5+T5) Operating (W+P6+T6) Operating (W+P6+T6) Operating (W+P7+T7) Operating (W+P9+T9) Operating (W+P9+T9) Operating (W+P10+T10) Design (W+PD+TD) Static seismic (g's) Wind 2 Modal analysis

Step 5:

Save the model and perform analysis through Layout window > File > Analyze.

In order to understand the loads and load combinations used for analysis, review the CAEPIPE results file for Support Loads (loads acting on the supports by the piping for each load case), Element Forces & Moments (local/global forces and moments on each element for each load case) and Support Load Summary (listing support loads at particular support for all <u>relevant</u> load cases and load combinations).

-0	Саер	ipe : l	Loads on	Anchors:	Operating	(W+P1+	T1) - [Mu	ItipleThe	rmalLoads.res (C:\Tutorials\03_Multi — 🛛	×
<u>F</u> il	e <u>R</u> es	ults	<u>V</u> iew	<u>O</u> ptions	<u>W</u> indow	<u>H</u> elp				
4	5	╉			ð 16		-	\Rightarrow	$\blacksquare \blacklozenge \blacklozenge \blacksquare \diamondsuit \dashv \diamondsuit$	
#	Node	Tag	FX (lb)	FY (lb)	FZ (lb)	MX (ft-lb)	MY (ft-lb)	MZ (ft-lb)		
1	10		-17	-169	887	-25	5	283	Load cases X	
2	130		78	-647	-971	3798	-6392	4486	C Sustained (W/+P) C Operating (W/+P2+T2)	
3	1010		-11	-3	154	38	4	-141	C Sustained (with) C operating (with 2+12)	
4	2010		8	-172	735	-26	-4	75	O Sustained (W+P1) O Uperating (W+P3+13)	
5	2130		80	-705	-801	4838	-4931	4992	 Sustained (W+P2) Operating (W+P4+T4) 	
6	3010		75	-185	755	-31	-27	-454	 Sustained (W+P3) Operating (W+P5+T5) 	
7	3130		-73	-723	-745	4486	4655	-5269	C Sustained (W+P4) C Seismic (g)	
8	4010		39	-227	838	-45	-15	38	○ Sustained (W+P5) ○ Wind	
<u> </u> 9	4130		-149	-679	-1252	5030	8051	-4650	C Expansion (T1) C Wind 2	
⊢									C Expansion (T2)	
⊢									C. Expansion (T2)	
⊢									C Expansion (13)	
⊢									C Expansion (T4)	
\vdash									C Expansion (T5)	
									C Expansion (T1-T2)	
									C Expansion (T1-T3)	
									C Expansion (T1-T4)	
									C Expansion (T1-T5)	
									C Expansion (T2-T3)	
									C Expansion (12.14)	
									Expansion (12-14)	
									C Expansion (T2-T5)	
									C Expansion (T3-T4)	
⊢									C Expansion (T3-T5)	
									C Expansion (T4-T5)	
\vdash									Operating (W+P1+T1)	
									OK Cancel	

•I• Caepipe : Supp	port load	summary	for ancho	or at node	10 - [Mu	ltipleTher	malLo	ads.res	(C:\Tu	torials	\$\03		×
<u>File R</u> esults <u>V</u> ie	ew <u>O</u> pti	ons <u>W</u> ir	ndow <u>H</u>	elp									
					<u> </u>			<u> </u>	λ				
						▶ 🗉	↓ <		$\overline{\mathbf{v}}$				
I and combination	EV (IL)	EV (IL)											
Sustained	165	11	F2 (ID)	MA (RHD)		MZ (RHD)							
Operation1	.17	.169	987	-25	5	283							
Operating?	.230	38	753	53	81	-5731							
Operating3	.222	-4	843	37	78	-5719							
Operating4	-222	-4	843	37	78	-5720							
Operating5	-222	-4	843	37	78	-5720							
Sustained+Wind	-165	11	4	42	58	-5695							
Operating1+Wind	-17	-169	887	-25	5	283							
Operating2+Wind	-230	38	753	53	81	-5731							
Operating3+Wind	-222	-4	843	37	78	-5719							
Operating4+Wind	-222	-4	843	37	78	-5720							
Operating5+Wind	-222	-4	843	37	78	-5720							
Sustained+Wind 2	-165	11	4	42	58	-5695							
Operating1+Wind 2	-17	-169	887	-25	5	283							
Operating2+Wind 2	-230	38	753	53	81	-5731							
Operating3+Wind 2	-222	-4	843	37	78	-5719							
Operating4+Wind 2	-222	-4	843	37	78	-5720							
Operating5+Wind 2	-222	-4	843	37	78	-5720							
Sustained+Seismic	-159	11	57	45	61	-5652							
Sustained-Seismic	-172	10	-49	40	55	-5738							
Operating1+Seismic	-10	-169	940	-22	8	326							
Operating1-Seismic	-23	-170	834	-28	2	241							
Operating2+Seismic	-224	39	806	56	84	-5689							
Operating2-Seismic	-236	38	700	50	79	-5774							
Operating3+Seismic	-216	-4	896	40	81	-5677							
Operating3-Seismic	-228	-5	790	34	75	-5762							
Operating4+Seismic	-216	-4	896	40	81	-5678							
Operating4-Seismic	-228	-5	790	34	75	-5763							
Operating5+Seismic	-216	-4	896	40	81	-5678							
Operating5-Seismic	-228	-5	790	34	75	-5763							
Maximum	-10	39	940	56	84	326							
Minimum	-236	-170	-49	-28	2	-5774							
Allowables	0	0	0	0	0	0							

The Sorted Stresses in CAEPIPE lists the maximum of Expansion stresses for all thermal range cases at <u>each node</u> as well as the maximum of Sustained + Occasional stresses for all Occasional cases at <u>each</u> <u>node</u>. On the other hand, for the Sustained case, it always uses the maximum pressure among the input pressures (P1 through P10) while computing Sustained Stress at <u>each</u> node.

1-0-1	Caepip	e : B31	.1 (202	0) Co	de com	plianc	e (Sorte	ed stre	esses) -	[Mult	ipleThe	rmalLo	ads.r	es (C:\Tuto	rials\03		×
<u>F</u> ile	<u>R</u> esul	ts ⊻	iew <u>O</u>	ption	s <u>W</u> in	dow	<u>H</u> elp										
4	6				fô) ((⇒	S	s⁄A					
		Susta	ained			Expar	nsion			Occa	sional		^				
Ŧ	Node	SL (psi)	SH (psi)	SL SH	Node	SE (psi)	SA (psi)	<u>SE</u> SA	Node	SO (psi)	1.2SH (psi)	<u>SO</u> 1.2SH					
1	7700A	4653	13450	0.35	120A	7160	33391	0.21	90A	4916	16140	0.30					
2	90A	4631	13450	0.34	7700A	6814	33034	0.21	7700A	4700	16140	0.29					
3	120A	4297	13450	0.32	120B	5920	29921	0.20	120A	4598	16140	0.28					
4	90B	3740	13450	0.28	4110A	7336	37146	0.20	120B	3954	16140	0.24					
5	100A	3738	13450	0.28	2110A	7075	36997	0.19	90B	3891	16140	0.24					
6	120B	3704	13450	0.28	2120A	6871	36925	0.19	100A	3889	16140	0.24					
7	105	3352	13450	0.25	90A	5321	28994	0.18	105	3605	16140	0.22					
8	25	3118	13450	0.23	3110A	6739	37023	0.18	25	3142	16140	0.19					
9	20	3111	13450	0.23	3120A	6488	37191	0.17	20	3134	16140	0.19					
10	80	2938	13450	0.22	4120A	6038	36721	0.16	80	2981	16140	0.18					
11	110B	2598	13450	0.19	110A	5456	36534	0.15	110B	2721	16140	0.17					
12	2105	2454	13450	0.18	4090A	5308	35872	0.15	2105	2683	16140	0.17					
13	2090A	2315	13450	0.17	20	4253	30514	0.14	2090A	2631	16140	0.16					
14	3105	2307	13450	0.17	90B	4033	29885	0.13	3105	2532	16140	0.16					
15	100B	2247	13450	0.17	100A	4029	29887	0.13	100B	2506	16140	0.16	~				

Similarly, Code Compliance report lists the Stresses <u>element-wise</u> following the same procedure as done for Sorted Stresses.

-0	Caepi	pe : B3	1.1 (20	020) Co	de Co	mplia	nce - [!	Multip	leThe	rmalLo	ads.res	(C:\	,Tutorials\03_MultipleTherm		×
Eil	e <u>R</u> esu	ults <u>V</u>	iew	<u>O</u> ption	s <u>W</u>	indow	<u>H</u> elp)							
4	5	⋕ [f	d (\ [<	• 📫	>				
		Press.	S	ustained	ł	E	xpansion	n	C)ccasior	nal	^			
Ŧ	Node	Allow. (psi)	SL (psi)	SH (psi)	SL SH	SE (psi)	SA (psi)	<u>SE</u> SA	SO (psi)	1.2SH (psi)	<u>SO</u> 1.2SH				
1	20 25	10.1 250	3111 3117	13450 13450	0.23 0.23	4253 3273	30514 30508	0.14 0.11	3134 3142	16140 16140	0.19 0.19				
2	25 30	10.1	3118 1926	13450 13450	0.23 0.14	3275 1989	30507 31699	0.11 0.06	3142 1945	16140 16140	0.19 0.12				
3	30 35	10.1 211	1924 1939	13450 13450	0.14 0.14	1982 1986	31701 31686	0.06 0.06	1943 1959	16140 16140	0.12 0.12				
4	40 50	10.1 211	1979 2115	13450 13450	0.15 0.16	1992 2006	31646 31510	0.06 0.06	2005 2160	16140 16140	0.12 0.13				
5	50 60	10.1 211	2115 1990	13450 13450	0.16 0.15	2006 2011	31510 31635	0.06 0.06	2160 2014	16140 16140	0.13 0.12				
6	70 80	10.1 211	1978 2863	13450 13450	0.15 0.21	2052 2762	31647 30762	0.06 0.09	2002 2914	16140 16140	0.12 0.18				
7	80 90A	10.1 211	2388 1564	13450 13450	0.18 0.12	2162 1361	31237 32061	0.07 0.04	2462 1637	16140 16140	0.15 0.10				
8	90A 90B	10.1 140	4631 3740	13450 13450	0.34 0.28	5321 4033	28994 29885	0.18 0.13	4916 3891	16140 16140	0.30 0.24				
9	90B 100A	10.1 211	1224 1224	13450 13450	0.09 0.09	988 987	32401 32401	0.03 0.03	1266 1265	16140 16140	0.08 0.08	~			